Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available July 18, 2026
- 
            We introduce CrossPrefetch, a novel cross-layered I/O prefetching mechanism that operates across the OS and a user-level runtime to achieve optimal performance. Existing OS prefetching mechanisms suffer from rigid interfaces that do not provide information to applications on the prefetch effectiveness, suffer from high concurrency bottlenecks, and are inefficient in utilizing available system memory. CrossPrefetch addresses these limitations by dividing responsibilities between the OS and runtime, minimizing overhead, and achieving low cache misses, lock contentions, and higher I/O performance. CrossPrefetch tackles the limitations of rigid OS prefetching interfaces by maintaining and exporting cache state and prefetch effectiveness to user-level runtimes. It also addresses scalability and concurrency bottlenecks by distinguishing between regular I/O and prefetch operations paths and introduces fine-grained prefetch indexing for shared files. Finally, CrossPrefetch designs low-interference access pattern prediction combined with support for adaptive and aggressive techniques to exploit memory capacity and storage bandwidth. Our evaluation of CrossPrefetch, encompassing microbenchmarks, macrobenchmarks, and real-world workloads, illustrates performance gains of up to 1.22x-3.7x in I/O throughput.We also evaluate CrossPrefetch across different file systems and local and remote storage configurations.more » « less
- 
            Earthquake early warning systems use synthetic data from simulation frameworks like MudPy to train models for predicting the magnitudes of large earthquakes. MudPy, although powerful, has limitations: a lengthy simulation time to generate the required data, lack of user-friendliness, and no platform for discovering and sharing its data. We introduce FakeQuakes DAGMan Workflow (FDW), which utilizes Open Science Grid (OSG) for parallel computations to accelerate and streamline MudPy simulations. FDW significantly reduces runtime and increases throughput compared to a single-machine setup. Using FDW, we also explore partitioned parallel HTCondor DAGMan workflows to enhance OSG efficiency. Additionally, we investigate leveraging cyberinfrastructure, such as Virtual Data Collaboratory (VDC), for enhancing MudPy and OSG. Specifically, we simulate using Cloud bursting policies to enforce FDW job-offloading to VDC during OSG peak demand, addressing shared resource issues and user goals; we also discuss VDC’s value in facilitating a platform for broad access to MudPy products.more » « less
- 
            null (Ed.)Large-scale multiuser scientific facilities, such as geographically distributed observatories, remote instruments, and experimental platforms, represent some of the largest national investments and can enable dramatic advances across many areas of science. Recent examples of such advances include the detection of gravitational waves and the imaging of a black hole’s event horizon. However, as the number of such facilities and their users grow, along with the complexity, diversity, and volumes of their data products, finding and accessing relevant data is becoming increasingly challenging, limiting the potential impact of facilities. These challenges are further amplified as scientists and application workflows increasingly try to integrate facilities’ data from diverse domains. In this paper, we leverage concepts underlying recommender systems, which are extremely effective in e-commerce, to address these data-discovery and data-access challenges for large-scale distributed scientific facilities. We first analyze data from facilities and identify and model user-query patterns in terms of facility location and spatial localities, domain-specific data models, and user associations. We then use this analysis to generate a knowledge graph and develop the collaborative knowledge-aware graph attention network (CKAT) recommendation model, which leverages graph neural networks (GNNs) to explicitly encode the collaborative signals through propagation and combine them with knowledge associations. Moreover, we integrate a knowledge-aware neural attention mechanism to enable the CKAT to pay more attention to key information while reducing irrelevant noise, thereby increasing the accuracy of the recommendations. We apply the proposed model on two real-world facility datasets and empirically demonstrate that the CKAT can effectively facilitate data discovery, significantly outperforming several compelling state-of-the-art baseline models.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
